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Abstract. We investigate the statics and dynamics of spatial phase segregation process of a mixture of
fermion atoms in a harmonic trap using the density functional theory. The kinetic energy of the fermion
gas is written in terms of the density and its gradients. Several cases have been studied by neglecting the
gradient terms (the Thomas-Fermi limit) which are then compared with the Monte-Carlo results using the
full gradient corrected kinetic energy. A linear instability analysis has been performed using the random-
phase approximation. Near the onset of instability, the fastest unstable mode for spinodal decomposition
is found to occur at q = 0. However, in the strong coupling limit, many more modes with q ≈ KF decay
with comparable time scales.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena –
64.75.+g Solubility, segregation, and mixing; phase separation

1 Introduction

Recent realizations of two [1,2] and three [3] component
alkali Bose-Einstein condensates (BEC’s) in a trap provide
us with new systems to explore the physics in otherwise
unachievable parameter regimes [4–6]. Dramatic results
have recently been observed in the phase segregation dy-
namics of mixtures of Rb [1,2] and Na [3] gases. Periodic
spatial structures were found at intermediate times which
then recombine at a later time.

Phase segregation phenomena have been much studied
in materials science and these can be understood using
classical mechanics. Spatial modulations have also been
observed, for example, in AlNiCo alloys [7]. These were
explained in terms of a concept called spinodal decompo-
sition [8]. When a system is quenched from the homoge-
neous phase into a broken-symmetry phase, the ordered
phase does not order instantaneously. Instead, different
length scales set in as the domains form and grow with
time. For the BEC’s, however, quantum mechanics play
an important role. It has been shown [9] that it is possi-
ble to have an analogous spinodal decomposition, which
manifests some of the phenomenology including a periodic
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spatial structure at an intermediate time that is now de-
termined by quantum mechanics. The time scale provides
for a self-consistent check of the theory and is consistent
with the experimental results [2]. The growth of domains
at later times is now determined by quantum tunneling
and not by classical diffusion.

Recently, it became possible [10] to cool a single com-
ponent system of about a million 40K fermionic atoms in
a magnetic trap below the Fermi temperature, TF, leading
to the realization of a spin-polarized fermion gas of atoms.
Similar to electrons in a solid, the dilute gas of atoms
fills all the lowest energy states below the Fermi energy,
EF. The transition to this quantum degenerate state is
gradual as compared to the abrupt phase transition into
a Bose condensate. For single component fermionic sys-
tems, however, the equilibrium is difficult to achieve as
the s-wave elastic collisions are prohibited due to Pauli
exclusion principle. In the experiments of DeMarco and
Jin [10], this was circumvented by using a mixture of two
nuclear spin states of 40K atoms for which s-wave collisions
are allowed. One of the manifestations of quantum me-
chanics was the nature of momentum distribution which
differed from the well-known classical Gaussian distribu-
tion. This system corresponds to the weak coupling limit
in which the physical properties are close to those of a
non-interacting fermion gas. The other system which is



182 The European Physical Journal D

being explored [11] is the gas of 6Li atoms. Mixtures of
fermions interacting with the Coulomb interaction have
been studied in the context of the electron-hole fluids [12].
For fermions mixtures on a lattice site interacting with
the Hubbard Hamiltonian, the partial phase segregation
leads to what is called antiferromagnetism or a spin den-
sity wave (SDW) in condensed matter physics. Thermo-
dynamic properties as well as density and momentum dis-
tributions of spin-polarized fermionic gas of atoms in a
harmonic trap have been studied in recent years [13,
14,19]. Butts and Rokhsar [13] have obtained universal
forms of the spatial and momentum distributions for a
single component spin-polarized non-interacting fermion
gas using the Thomas-Fermi (TF) approximation, whereas
Schneider and Wallis [19] have studied the effects of shell
closure for small number of atoms, similar to the nuclear
shell model. Bruun and Burnett [14] have studied an inter-
acting fermion gas of 6Li atoms which have a large nega-
tive scattering length. Such an interaction could also lead
to the possibility of superfluid state [20] in these systems.
Roth and Feldmeier [15] have studied the phase diagram of
mixed Fermi gases including effective s and p-wave scat-
tering but including only the Thomas-Fermi kinetic en-
ergy and neglecting gradient correction terms. Amoruso
et al. [17] have also considered this problem, but have
solved the problem of dynamics using a hydrodynamics
approach.

In the present paper, we consider mixtures of these new
finite systems of ultracold fermionic atoms with a positive
scattering length in the limit of both weak and strong
coupling and explore the equilibrium and non-equilibrium
quantum statistical physics using the TF approximation
with gradient corrections to the kinetic energy, Monte-
Carlo simulations, and the random phase approximation
to treat the dynamics.

In Section 2 we present the equilibrium static proper-
ties of mixtures of fermionic atoms in different parameters
regimes using both the TF and the Monte Carlo simula-
tions. In Section 3, we study the dynamics of phase seg-
regation of such mixtures using a linear stability analysis.
Finally, conclusions will be presented in Section 4.

2 Statics

We first start with the statics of a two component fermion
gas of atoms with masses m1 and m2 and particle num-
bers N1 and N2. This is assumed to be confined in an az-
imuthally symmetric harmonic trap with radial and axial
frequencies ω and λω, respectively which are considered to
be the same for both the components. Unlike the electron
gas in matter, the fermion gas of atoms is neutral and di-
lute. Therefore, significant interactions between atoms are
only short-ranged and that would be responsible for any
phase segregation in the system. In the long wavelength
limit, the system can be well described by the density
functional theory and the total energy can be written as

E =
∫

[
∑

σ

E0σ(ρσ) + gρ1(r)ρ2(r)]dr. (1)

Here E0σ = (�2/2mσ)τσ(r) + (1/2)mσω2(x2 + y2 +
λ2z2)ρσ(r) is the non-interacting part of the energy den-
sity and ρσ(r) is the particle density of the component
σ = 1, 2 with

∫
ρσ(r)dr = Nσ. The interaction term has

been approximated by the contact potential gδ(r − r′).
g is related to the scattering length a by g = 2π�

2a/m̄,
with m̄ = m1m2/(m1 + m2). In accordance with the ex-
periments, we take a to be positive and consider only the
s-wave scattering. Therefore, the contribution to the inter-
action term is non-zero only when the species are different
or are in different hyperfine states as in experiments. From
the Pauli exclusion principle, there is no contact interac-
tion between particles of the same species (spin). In a more
general treatment including p-wave scattering there would
be additional terms involving interaction between identi-
cal species also. But these are small, and thus neglected.

For the kinetic energy density τσ we use a local ap-
proximation including the first and second derivatives of
the particle density,

τσ(r) =
3
5
(6π2)2/3ρσ(r)5/3 +

1
36

|∇ρσ(r)|2
ρσ(r)

+
1
3
∇2ρσ(r).

(2)

The first term represents the Thomas-Fermi (TF) ap-
proximation to the kinetic energy. The second term is
|∇√

ρσ |2/9 and represents the gradient correction to the
kinetic energy [18]. The integral of the third term extended
to infinity vanishes, and thus it will not be included in the
calculations. The Monte-Carlo results confirm that the
gradient term is at least 2 orders of magnitude smaller
than the TF term, but this term is important in that
it represents a surface energy term, and will yield the
qualitatively correct shape of the surface in case of phase
separation.

Without the interaction term in (1), the system be-
haves in the same fashion as the one component system for
which Butts and Rokhsar [13] obtained EF to be related to
the total particle number N by EF = �ω(6λN)1/3. Defin-
ing RF = (2EF/mω2)1/2 (giving the characteristic size of
the gas), and KF = (2mEF/�

2)1/2 (momentum of a free
particle of energy EF), they calculated the density profile
at T = 0 to be given by

ρnon−interacting(r) = ρ0

[
1 − r̄2/R2

F

]3/2
, (3)

with r̄2 = x2 + y2 + λ2z2, ρ0 = 8Nλ/π2R3
F = K3

F/6π2.
In the TF approximation, the trapping potential can be
treated to be locally constant and we can define a lo-
cal Fermi wavevector, kF(r) so that EF = �

2k2
F(r)/2m +

V (r), and the density at T = 0 can also be written as
ρnon−interacting(r) = k3

F(r)/6π2 for each of the species.
We now examine the properties of the mixed (two-

component) interacting system and will show how the re-
pulsive interaction modifies this non-interacting density
profile as well as other properties of the system. The
strength of the coupling, which controls the phase seg-
regation, depends on the dimensionless parameter which
is the ratio between the interaction and the kinetic
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energies, namely

gρ1ρ2/

[
3�

2

10
(6π2)2/3(ρ5/3

1 /m1 + ρ
5/3
2 /m2)

]
.

In the simple case of equal masses (m1 = m2 = m) and
densities (ρ1 = ρ2 = ρ) of the two components, this sim-
ply scales as aKF. This means that the coupling would
be stronger if a or the density is large. Also as EF is pro-
portional to the frequency of the trap at constant N (a
higher frequency leads to a larger separation between the
levels), the coupling would be large for higher frequencies.
From now on, to measure the strength of the interaction,
we will use the dimensionless parameters cσ = KFσ a/π,
where KFσ = (2mσµσ)1/2/�, or in the case of equal chem-
ical potentials, just c = KF a/π.

For a general two-component system with chemical po-
tentials µ1 and µ2, the ground state is obtained by mini-
mizing the thermodynamic potential Ω = E − ∫ (µ1ρ1 +
µ2ρ2)dr. This leads to the following system of equations:

∂Ω

∂ρ1(r)
=

�
2

2m1

[
(6π2ρ1)

2
3 − 1

36

(∣∣∣∣∇ρ1

ρ1

∣∣∣∣
2

+ 2
∇2ρ1

ρ1

)]

+
(

1
2
m1ω

2r̄2 − µ1 + gρ2

)
= 0 (4)

∂Ω

∂ρ2(r)
=

�
2

2m2

[
(6π2ρ2)

2
3 − 1

36

(∣∣∣∣∇ρ2

ρ2

∣∣∣∣
2

+ 2
∇2ρ2

ρ2

)]

+
(

1
2
m2ω

2r̄2 − µ2 + gρ1

)
= 0. (5)

Similar to the one-component case, one can rewrite
the above in a dimensionless form by introducing for
each of the species σ, the following quantities: Rσ =
[2µσ/mσω2]

1
2 , ρσ0 = K3

Fσ/6π2, Gσ = gρσ̄0/µσ, and
nσ(r) = ρσ(r)/ρσ0. Here σ̄ = 3 − σ. If one neglects the
smaller terms containing derivatives of ρ (the TF limit),
one obtains the following algebraic equations satisfied by
the dimensionless densities n1 and n2 for any coupling
strength Gσ:

n
2/3
1 = 1 − r̄2/R2

1 − G1n2

n
2/3
2 = 1 − r̄2/R2

2 − G2n1. (6)

We see that the effect of the additional Gσnσ̄ term, i.e. the
interaction, is to deplete the regions where nσ̄ is highest
(without necessarily leading to a phase segregation).

When there is phase segregation, the interface energy
is proportional to the square root of the coefficient of the
gradient term [21] and it often serves to distinguish dif-
ferent configurations. In that case, their effect cannot be
neglected and these are included in the Monte-Carlo sim-
ulations. We next discuss some special cases in the TF
limit.
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Fig. 1. (a) Dimensionless density versus dimensionless radius
r̄/R for G = 1. One of the asymmetric solutions (A2) is de-
pleted at the center while the other one has a large concen-
tration. For r̄/R larger than 0.51 both asymmetric solutions
join the symmetric density profile. The sharp features around
this point are due to the neglect of the gradient terms. (b)
Universal curve of rescaled density N = nG3 versus rescaled
distance from the border P = (1− r̄2/R2)G2, valid for all cou-
pling strengths G. Note that 0 < P < 1, and for the symmetric
case Nmax = 0.43 (r̄ = 0 or P = 1).

2.1 TF limit: similar densities: (µ1 = µ2)
for any coupling

To simplify the notations, we will use: µ1 = µ2 = µ; R1 =
R2 = R; G1 = G2 = G. In this case, three solutions to
equation (6) will correspond to n1 = n2, of which only
one is physical with n1 > 0. If a solution n2 = f(n1) ex-
ists, by symmetry, the other one is necessarily n1 = f(n2).
These solutions with n1 �= n2 can be obtained numeri-
cally. The real solutions are plotted in Figure 1, where
the n1 = n2 solution is referred to as “Sym”, and the
other conjugate (asymmetric) solutions are referred to as
“A1” and “A2”. We note, as in the paper by Roth and
Feldmeier [15], that it is possible to divide the space into
many regions and adopt any of the two solutions A1 or
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A2 for the first species and the other one for the second
species. This will lead to discontinuities in particle den-
sity when one goes from a region to its neighbors. The
total energy within TF theory is the same for all these
configurations. A surface energy, however small, is needed
in the theory to break this degeneracy. We have adopted
the formula (2) to represent this energy. It is not an ex-
act formula; there are other proposals for the coefficient of
the gradient term [16]; as such, they can at best describe
qualitatively the density distributions. But they have the
important property of breaking this degeneracy and lead-
ing to the relatively correct shapes of the droplets. Below
we discuss the solutions in the weak and strong coupling
limits.

2.1.1 Weak or intermediate coupling regime

In this case we look for symmetric solutions
(n1 = n2 = n). Equation (6) then reduces to (drop-
ping the subscripts):

n(r)2/3 = 1 − r̄2/R2 − G n(r), (7)

which can be solved easily numerically to give the den-
sity profile of the non-segregated phase. It is possible to
show that after proper rescaling, the result for all cou-
pling strengths and at any point can be summarized in a
single universal curve in Figure 1. If n(r) is a solution to
equation (7), then N = nG3 versus P =

[
1 − r̄2/R2

]G2

is the universal function of Figure 1 satisfying N 2/3 +
N − P = 0. For small couplings and near the bound-
ary (P ≈ 0; N 2/3 � N ⇔ N = P3/2), this curve is a
power law and in fact tends to the non-interacting density
n(r) ≈ [1 − (x2 + y2 + λ2z2)/R2

]3/2.

2.1.2 Strong coupling regime

The above situation, however, can not be always sus-
tained. In the strong coupling limit, we can have phase
segregation (n1 �= n2), and one needs to go back to equa-
tion (6) which now admits lower energy solutions that are
not “permutation symmetric”:

n
2/3
1 + Gn2 = 1 − (x2 + y2 + λ2z2)/R2

⇔ N 2/3
1 + N2 = P ⇔ N 2

1 = (P −N2)3

n
2/3
2 + Gn1 = 1 − (x2 + y2 + λ2z2)/R2

⇔ N 2/3
2 + N1 = P ⇔ N 2

2 = (P −N1)3, (8)

where we used the same simplifying notations as before.
As previously mentioned, the symmetric solution N1 = N2

always exists. This can be exploited to reduce the above
equations to a quadratic equation, which is analytically
more transparent.

Subtracting the above equations from each other and
dividing out by N1 −N2, we obtain,

N1 + N2 = (P −N2)2 + (P −N1)2 + (P −N2)(P −N1).
(9)

This quadratic equation can be solved for N1 in terms
of N2.

The solutions will all be axially symmetric in that they
are functions of r̄2 only. Again, it is possible to have de-
generate nonsymmetric solutions by adopting N1 in some
subvolumes, and N2 in other subvolumes as the density
of the first species; the second species having the comple-
mentary solution as their density.

The broken symmetry solutions including the surface
energy term will be discussed in the Section 2.5 where
we present results obtained from the Monte-Carlo simu-
lations. In Figure 1, the solutions with n1 �= n2 can be
seen in the limit of small reduced distance and large P .
The bifurcation point where these solutions start to oc-
cur, corresponds, from numerical results, to Pc ≈ 0.741,
and Nc = nG3 ≈ 0.296, which separate the strong
coupling regime from the weak one. In both figures,
the symmetric solution is drawn with solid line, and
the asymmetric ones with dashed lines. Actually, at the
bifurcation point, we have exactly Gn

1
3 = 2/3 as will be

shown in the TF linear stability analysis section below.
Since G2 = P/(1 − r̄2/R2) ≥ P , the smallest coupling
Gc for the unequal solutions to occur satisfies Gc =

√Pc.
Since G = (4/3)KFa/π, we find a critical dimensionless
coupling c = (KFa/π)c ≈ 0.646. We shall come back and
compare this value with that obtained with a different
approach.

2.2 TF limit: very different densities: (µ1 � µ2)
for any coupling

One can also treat the case where one of the species is
a minority (µ1 � µ2). If we assume µ1 = λ2µ2, then
R1 = λR2; KF1 = λKF2; ρ10 = λ3ρ20; G2 = λ5G1, and
nσ ∼ 1. The density distribution of the majority species
will be weakly perturbed. Referring to equation (6), one
can see that the coupling G1 = gρ20/µ1 becomes very
small and maybe neglected. Thus a good approximation is
to assume ρ1 ≈ ρnon−interacting. The G2 term in the second
equation, however, is a large quantity, and will strongly
affect the particle density n2. Therefore,

n2(r) ≈
[
1 − r̄2/R2

2 − G2[1 − r̄2/R2
1]

3
2

] 3
2

. (10)

In the presence of the majority species, the number of
atoms of minority species will be much less than their non-
interacting counterparts with the same chemical potential.
As we can see from the above equation, their number, even
at the origin is reduced by a factor of (1 − G2)

3
2 . We find

that for a large enough G2 the density N2 is depleted from
the center (see also Fig. 1b, curve A2).
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2.3 TF limit: linear instability analysis

We next study the fluctuations of the system about its
equilibrium configuration in the TF limit by expanding
the thermodynamic potential Ω upto second order in the
particle density variation δρ about its minimum which was
computed above. The sign of the second derivative of Ω
will decide the stability of the symmetric phase. A phase
segregation occurs when the Hessian (second derivative
matrix) ceases to be positive definite. If the transition is
first order, it would have already occurred before reaching
a negative second derivative. The second derivative from
equations (3, 4) is just a 2 × 2 matrix:

∂2Ω

∂ρσ∂ρσ′
=

�
2

2mσ

2
3
(6π2)

2
3 ρ

− 1
3

σ δσσ′ + g (1 − δσσ′). (11)

The phase instability criterion thus becomes ω− = 0 where
ω− is the smallest eigenvalue of the Hessian matrix; im-
plying:

�
2

2
√

m1m2

2
3
(6π2)

2
3 (ρ1ρ2)−

1
6 = g

⇔ µ

ρ0

2
3
n−1/3 = g if (ρ1 = ρ2) (12)

Thus, in the symmetric case (µ1 = µ2; ρ1 = ρ2), the in-
stability will first occur locally at the point where the
relation N 1/3 = Gn

1
3 = 2/3 is satisfied. This implies that

N = 0.296, which is exactly the critical Nc obtained ear-
lier from a different analysis. The two methods (searching
for the energy minimum discussed in Sects. 2.1 and 2.2,
and searching the zero of the Hessian matrix discussed
in Sect. 2.3), occurring at the same point suggest that,
within the adopted model (TF), the transition might be
of second order.

2.4 Possibility of density modulation instability

Similar to the electron gas which has several kinds of
instabilities such as ferromagnetism, antiferromagnetism,
charge density wave, superconductivity, etc. these two-
component systems might also exhibit other types of in-
stabilities. To investigate them, we will assume the homo-
geneous case (ω = 0) as the analysis can be made simpler
by using the Fourier decomposition of the density. To get
some understanding of the nonuniform systems (such as
in a trap), one can assume in a semiclassical approxima-
tion, that the Fermi momentum depends on the position,
as before.

The density for the species σ can be written as the sum
of its Fourier components: ρσ(r) = ρ̄σ +

∑
q �=0 ρσq eiq.r,

with ρ̄σ � ρσq. Substituting this expression in the ther-
modynamic potential Ω, expanding up to second powers
of ρσq, and minimizing Ω with respect to the Fourier com-

ponents, we obtain:

∂Ω

∂ρσq
=

�
2

2mσ

[
2
3
(6π2ρ̄σ)

2
3

ρσ−q

ρ̄σ
+

1
36

q2 ρσ−q

ρ̄σ

]
+ gρσ̄−q

= 0 (13)

∂Ω

∂ρ̄σ
=

�
2

2mσ
(6π2ρ̄σ)

2
3 − µσ + gρ̄σ̄ = 0. (14)

Assuming 6π2ρ̄σ = k̄3
σ (note that in the presence of inter-

actions, the average density and Fermi momentum, which
we denote here by ρ̄σ and k̄σ respectively, are different
from their non-interacting values), the above equations
are simplified to:(

1 +
q2

24k̄2
σ

)
ρσq + 2

(
k̄σa

π

)
ρσ̄q = 0 (15)

�
2k̄2

σ

2m
+

4
3

(
k̄σ̄a

π

)
�

2k̄2
σ̄

2m
=

�
2K2

Fσ

2m
= µσ. (16)

It is clear from the above equations that if a = 0 then
ρσq = 0 is a solution (uniform density if no coupling). For
a > 0, we have ρσq and ρσ̄q of opposite signs for all q.
This means that there is phase segregation for repulsive
couplings. Furthermore, if a < 0, there will be density
modulation in the small q limit (the functional we con-
sidered is valid in the long wavelength limit). We shall
return to this point in Section 3 where the dynamics are
treated. These effects are very similar to antiferromagnetic
and charge density wave instabilities of the electron gas.
The only difference being in the range of the interaction
between the fermions.

One can also note that the transition points of equa-
tion (16) and previously studied equation (6) are the same
(in the ω = 0 and µ1 = µ2 case), since they are de-
rived from the same functional. Indeed from the positive-
definiteness of the functional Ω in this representation, one
obtains that the transition occurs for k̄σa/π = 1/2. In-
serting this critical value into equation (16), one finds
the relation between the non-interacting Fermi wavevec-
tor KF and the interacting one k̄σ at the transition point:
KF = k̄σ

√
5/3 which then implies

c = KFa/π =
1
2

√
5
3
≈ 0.645, (17)

which is exactly the same value as obtained from the nu-
merical result of the previous section.

2.5 General case: Monte-Carlo results

The density distribution that extremizes the energy func-
tional in equation (1) can be obtained by a Monte-Carlo
simulation with a weighting factor exp(−E/T ) for a pa-
rameter T that is sufficiently low. This is basically the
simulated annealing method and has been exploited suc-
cessfully in earlier treatment [6] of the corresponding Bose
system described by a Gross-Pitaevski functional.
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Fig. 2. Snap shot of the density profile at z = 0 as a function
of x and y in the weak coupling limit c = 0.032.

We approximate the volume integral of the energy
functional by a discrete sum. Using the scaled radius r̄,
we sample a lattice inside a sphere of diameter 2R con-
sisting of 40 sites along the diameter, making a total of
33 398 sites. The derivative term is approximated by a fi-
nite difference. For simplicity, we show here results for the
case when the two components have the same mass.

We first show in Figure 2 the density profile of com-
ponent 1 as a function of x and y for z = 0 for the weak
coupling case with no phase segregation. The values of dif-
ferent parameters were chosen to be ω = 135 × 2π rad/s,
a = 135 aBohr, λ = 0.14, and N1 = N2 = 106 (µ1 =
µ2 = 1.626 × 10−29 J); roughly corresponding to the ex-
perimental parameters of the 40K system [10]. In these ex-
periments, we estimate c = KFa/π = 0.032, RF = 26 µm,
and G = 0.042. The experimental parameter c is clearly
an order too small to imply a phase segregation. The den-
sity profile for component 2 is the same and hence is not
shown.

In the limit of strong interaction, phase segregation
starts, and as mentioned earlier, the system can now also
break cylindrical symmetry. This happens when KFa is
large enough, which in turn can be achieved with only
large KF, only large a, or both. To illustrate this, we
show in Figure 3 the density profiles for a = 3 000 aBohr,
µ1 = µ2 = 2.762× 10−29 J, and ω = 2 000 rad/s. This cor-
responds to c = 0.92, RF = 14.3 µm, and G = 1.23. The
difference in the densities of the two components shows
that the largest change occurs near the center where the
density is maximum.

It is to be further noted that for this case, the density
distribution is still quite cylindrical but there is a slight
asymmetry, as we can see from the graph of the difference.
This asymmetry becomes more pronounced as the inter-
action is increased further. The simulation being done at a
finite temperature, one can notice the fluctuations in the
density which are characteristic of a spinodal decompo-
sition. These are entropy effects and are present at finite
temperatures, but will disappear if the temperature is low-
ered very slowly to zero. One can already observe two main
areas with a net negative and positive “magnetization”
which will become more pronounced at lower tempera-

(a)

(b)

(c)

Fig. 3. Snap shot of the density profile of components 1 and 2
and their difference at z = 0 as a function of x and y in the
strong coupling limit (c = 0.92, ω = 2000 rad/s).

tures. In this case, the difference with the Thomas-Fermi
result is that first, the discontinuities in the density disap-
pear in favor of more smooth density profiles in the phase
separation region since they cost kinetic energy (they have
the same nature as magnetic domain walls which have an
energy proportional to J

∫
(∇m)2dr). Second, the broken

symmetry phase is composed of two regions of opposite
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(a)

(b)

Fig. 4. Snap shots of the density profiles at z = 0 as a function
of x and y for c1 = 0.98, c2 = 1.27, ω = 1 600 000 rad/s.
Density 2 is depleted in the central region.

magnetization. For spherically symmetric wells, there is
still degeneracy for the position of the domain wall: it
can be any plane dividing the sphere into two equal hemi-
spheres, whereas the Thomas-Fermi results predict a much
higher degeneracy: any configuration with any number of
walls is allowed provided the density as a function of r̄
is given by Figure 1. Adding the gradient correction to
the kinetic energy has resulted in selecting as the ground
state, states with domain walls of smallest area.

As discussed earlier, phase separation can also occur
when N1 � N2. As an illustration, we show in Figure 4
the density profiles for components 1 and 2 for the case
a = 104 aBohr, µ1 = 2.6016×10−26 J, µ2 = 4.336×10−26 J
and ω = 1 600 000 rad/s.

The density of component 2 is small and therefore, its
noise is also substantially higher. One can clearly see the
density depletion of component 2 at the center. In this
limit, the domain wall is a sphere centered at the origin.

3 Dynamics

We next turn our attention to the issue of dynamics.
For the classical and boson spinodal decompositions, the
fastest unstable mode occurs at a finite wave vector. We
ask if a similar situation occurs for the fermion case. We
found that the fastest unstable mode occurs at wavevec-
tor q = 0 at the onset of instability. For stronger coupling,
many modes with q ∼ KF decay with comparable time
scales. We now describe the details of this linear stability
analysis.

The energy functional (Eq. (1)) which was approxi-
mated with a local kinetic energy depending on the den-
sity and its derivatives is only good in the long wavelength
limit. Due to this approximation, we found that the insta-
bility has a local character and occurs first in regions of
high density. Here we will perform a linear instability anal-
ysis in the random phase approximation (RPA) to improve
upon this local picture. The linear susceptibility χ is de-
fined as the response of the particle density to an external
potential V which could also be σ-dependent:

δρσ(r) =
∑

σ′=1,2

∫
dr′χσσ′(r, r′)V ext

σ′ (r′)

=
∑

σ′=1,2

∫
dr′χ0

σσ′(r, r′)V tot
σ′ (r′). (18)

Here V tot is the total self-consistent field and is the
sum of the external field and that due to the interac-
tion: V tot

σ = Vσ + gδρσ̄. The bare response χ0
σσ can be

obtained from the usual Lindhard expression [22]. Since
there is no term in the Hamiltonian that interchanges the
species 1 and 2, off-diagonal terms of the susceptibility
are zero (χ12 = χ21 = 0). Taking the above into consider-
ation, equation (18) can be written in the following matrix
form: δρ = χ0(V +Gδρ), leading to δρ = [1−χ0G]−1χ0 V ,
where the 2 × 2 matrix G has 0 as its diagonal elements
and g as its off-diagonal elements, and χ0 is diagonal. Con-
sequently, an instability will occur when the following de-
terminant becomes zero:

Det|1− χ0G| = 1− g2χ0
11χ

0
22 = 0. (19)

In the case where the densities are equal, χ0
11 = χ0

22 ≡ χ0,
the two eigenmodes are calculated as:

δρ1 + δρ2 = (1 − χ0g)−1χ0(V1 + V2) (20)
δρ1 − δρ2 = (1 + χ0g)−1χ0(V1 − V2). (21)

The first mode corresponds to a density fluctuation, while
the second mode δρ1−δρ2 represents the phase separation
instability in which we are interested. The response corre-
sponding to this mode is given by ε(q, w) = [1+gχ0(q, w)].
The instability decay time ν−1 is determined from the for-
mula ε(q, iν) = 0, since, in this case, any infinitesimal ex-
ternal potential will lead to a large change in the density.
There exists a q = q0 such that ν(q0) is largest. This de-
termines the spinodal wavevector of the fermionic system
as it indicates the mode with fastest growth. In what fol-
lows, we will be treating the constant external potential
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Fig. 5. Surface plot of the positive part of the reduced
Lindhard susceptibility (χ̄) as a function of q/k̄ and the imag-
inary frequency.

problem where the Fermi momentum is k̄. For the confined
case, one can consider k̄ to be a local function related to
the density by k̄(r) = [6π2ρ(r)]1/3. From the Lindhard ex-
pression [22] for χ0 (real frequencies), we obtain, after cor-
recting for a spin degeneracy factor of 2, the correspond-
ing dimensionless response χ̄0 = −4π2

�
2χ0(q, iν)/mk̄ for

imaginary frequencies:

χ̄0(q, iν) = 1 +
1
2q

(1 + (ν/q)2 − (q/2)2)

× Log
[
(1 + q/2)2 + (ν/q)2

(1 − q/2)2 + (ν/q)2

]

− ν

q

(
tan−1

[
ν/q

(1 − q/2)

]
+ tan−1

[
ν/q

(1 + q/2)

])
· (22)

Here q is in units of k̄ and ν, in units of 2Ē/� = �k̄2/m.
The three-dimensional plot of χ̄0 as a function of q and ν
is shown in Figure 5.

The equation ε(q, w) = [1 ± gχ0(q, w)] = 0 implies
that the instability points for phase segregation with a
repulsive interaction (g > 0) and that of density modu-
lation with an attractive interaction are exactly the same
within RPA. This is also in agreement with the analysis of
Section 2.5 where it was shown that “antiferromagnetic”
instability (or a spin density wave SDW) occurs for re-
pulsive interactions, and “density wave” instability may
occur for attractive interactions. Although the suscepti-
bility can be both negative or positive, for a coupling of
fixed sign, one should only consider the physically correct
situation. In our case, for positive g, only the “magnetic”
instability, i.e. χ0 = −1/g should be considered.

Now since gχ0 = −χ̄0 k̄a/π, the instability condition
implies c̄χ̄0 = 1 where c̄ = k̄a/π. The maximum of χ̄0

is obtained for q → 0 and ω → 0 where it tends to 2.
From this result, we arrive at the conclusion that there is
no solution to ε(q, iν) = 0 for c̄ < 0.5 and no instability
develops, in agreement with the static study. For larger
values of c̄, the plane z = 1/c̄ intersects the surface of
χ̄0 on a curve which is displayed in Figure 6. The inverse
decay time ω as a function of the wavevector in units of
k̄ is shown in this figure. As can be seen, the fastest un-

Fig. 6. Contour plots of the Imaginary frequency Lindhard
susceptibility indicating the inverse decay time for the phase
segregation mode of wave vector q for several values of the
dimensionless coupling 1/c = π/k̄a= 0, 0.3, 0.65, 1, 1.45, 1.75,
1.9, 1.98 starting from the outermost line representing χ̄ = 0.

stable mode occurs at wavevector q = 0 and ω = 0 at
the onset of the instability (c̄ = 0.5) in agreement with
equation (17) previously derived. Indeed the instability
calculation derived in the previous section focused on the
long wavelength aspect of the problem.

For stronger couplings, many modes with q ≈ k̄ decay
with comparable time scales of the order of �/EF, but
those with shortest timescales (i.e. largest ω) prevail.

In the really strong interaction limit, further phase sep-
aration can take place either via tunneling [23,24] or via
quantum motion of the domain walls. We hope to investi-
gate this further in the future.

The behavior of the wavevector of instability is similar
to that of the classical spinodal decomposition, which we
briefly recapitulate here. The current J can be related to
the free energy F by Fick’s law: J = c∇F for some con-
stant c. After the onset of instability, F = (−A+Bq2)δρq.
As one goes from the onset of instability, A starts to
become non-zero. In addition, there is the particle con-
servation equation −∂tρ = ∇ · J . Combining the above
two equations, we obtain iωδρq = cq2(−A+Bq2)δρq. The
fastest mode occurs at a wavevector qc =

√
A/2B. Thus

at the onset of instability, qc = 0. qc becomes larger as one
goes away from the instability point.

4 Conclusion

In conclusion we have investigated the statics and dynam-
ics of the spatial phase segregation process of a mixture
of fermion atoms in a harmonic trap using the density
functional theory and the random phase approximation.
As the coupling starts to increase, even with the same
chemical potential, equilibrium distribution with unequal
densities starts to appear, which quite often do not exhibit
axially symmetric correlations. Similar to the classical and
Bose spinodal decomposition cases, the fastest mode for
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the initial phase segregation occurs at a finite wave-vector.
The condition of instability corresponds to a large inter-
action, which may be achieved experimentally with the
atoms close to a Feshbach resonance.

The instability calculation for the phase segregation
phenomena discussed here is related to the instability cal-
culation for the antiferromagnetic (or SDW) transition of
the electron gas. In the electron gas, this is enhanced when
there is nesting of Fermi surface such as in Cr or in one
dimensional materials. The transition always stops after
the 2KF instability due to the long range nature of the
Coulomb interaction, and no further “segregation” takes
place (see Mahan [22] for example).

An interesting situation is the one dimensional trap as
it would exhibit a much stronger instability. In mean field,
the one dimensional density difference response function
ε(2KF) = 1/[1 + KFa Log(T/EF)] is logarithmically di-
vergent at zero temperature. The transition temperature
occurs at Tc = EFe−1/KFa. One dimensional trap, which
can be realized for small values of λ, has been extensively
studied [3,10] and we expect a higher tendency towards
phase segregation in that case as well.
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